The US Government has been involved in e-mail in several different ways.
Starting in 1977, the US Postal Service (USPS) recognized that electronic mail and electronic transactions posed a significant threat to First Class mail volumes and revenue. Therefore, the USPS initiated an experimental e-mail service known as E-COM. Electronic messages were transmitted to a post office, printed out, and delivered as hard copy. To take advantage of the service, an individual had to transmit at least 200 messages. The delivery time of the messages was the same as First Class mail and cost 26 cents. Both the Postal Regulatory Commission and the Federal Communications Commission opposed E-COM. The FCC concluded that E-COM constituted common carriage under its jurisdiction and the USPS would have to file a tariff.[45] Three years after initiating the service, USPS canceled E-COM and attempted to sell it off.[46][47][48][49][50][51][52]
The early ARPANET dealt with multiple e-mail clients that had various, and at times incompatible, formats. For example, in the system Multics, the "@" sign meant "kill line" and anything after the "@" sign was ignored.[53] The Department of Defense DARPA desired to have uniformity and interoperability for e-mail and therefore funded efforts to drive towards unified interoperable standards. This led to David Crocker, John Vittal, Kenneth Pogran, and Austin Henderson publishing RFC 733, "Standard for the Format of ARPA Network Text Message" (November 21, 1977), which was apparently not effective. In 1979, a meeting was held at BBN to resolve incompatibility issues. Jon Postel recounted the meeting in RFC 808, "Summary of Computer Mail Services Meeting Held at BBN on 10 January 1979" (March 1, 1982), which includes an appendix listing the varying e-mail systems at the time. This, in turn, lead to the release of David Crocker's RFC 822, "Standard for the Format of ARPA Internet Text Messages" (August 13, 1982).[54]
The National Science Foundation took over operations of the ARPANET and Internet from the Department of Defense, and initiated NSFNet, a new backbone for the network. A part of the NSFNet AUP forbade commercial traffic.[55] In 1988, Vint Cerf arranged for an interconnection of MCI Mail with NSFNET on an experimental basis. The following year Compuserve e-mail interconnected with NSFNET. Within a few years the commercial traffic restriction was removed from NSFNETs AUP, and NSFNET was privatized.
In the late 1990s, the Federal Trade Commission grew concerned with fraud transpiring in e-mail, and initiated a series of procedures on spam, fraud, and phishing.[56] In 2004, FTC jurisdiction over spam was codified into law in the form of the CAN SPAM Act.[57] Several other US Federal Agencies have also exercised jurisdiction including the Department of Justice and the Secret Service.
Wednesday, March 3, 2010
Tracking of sent mail
The original SMTP mail service provides limited mechanisms for tracking a transmitted message, and none for verifying that it has been delivered or read. It requires that each mail server must either deliver it onward or return a failure notice (bounce message), but both software bugs and system failures can cause messages to be lost. To remedy this, the IETF introduced Delivery Status Notifications (delivery receipts) and Message Disposition Notifications (return receipts); however, these are not universally deployed in production.
There are a number of systems that allow the sender to see if messages have been opened
There are a number of systems that allow the sender to see if messages have been opened
Privacy concerns
Main article: e-mail privacy
E-mail privacy, without some security precautions, can be compromised because:
e-mail messages are generally not encrypted
e-mail messages have to go through intermediate computers before reaching their destination, meaning it is relatively easy for others to intercept and read messages
many Internet Service Providers (ISP) store copies of e-mail messages on their mail servers before they are delivered. The backups of these can remain for up to several months on their server, despite deletion from the mailbox.
the "Received:"-fields and other information in the e-mail can often identify the sender, preventing anonymous communication.
There are cryptography applications that can serve as a remedy to one or more of the above. For example, Virtual Private Networks or the Tor anonymity network can be used to encrypt traffic from the user machine to a safer network while GPG, PGP, SMEmail [43] , or S/MIME can be used for end-to-end message encryption, and SMTP STARTTLS or SMTP over Transport Layer Security/Secure Sockets Layer can be used to encrypt communications for a single mail hop between the SMTP client and the SMTP server.
Additionally, many mail user agents do not protect logins and passwords, making them easy to intercept by an attacker. Encrypted authentication schemes such as SASL prevent this.
Finally, attached files share many of the same hazards as those found in peer-to-peer filesharing. Attached files may contain trojans or viruses
E-mail privacy, without some security precautions, can be compromised because:
e-mail messages are generally not encrypted
e-mail messages have to go through intermediate computers before reaching their destination, meaning it is relatively easy for others to intercept and read messages
many Internet Service Providers (ISP) store copies of e-mail messages on their mail servers before they are delivered. The backups of these can remain for up to several months on their server, despite deletion from the mailbox.
the "Received:"-fields and other information in the e-mail can often identify the sender, preventing anonymous communication.
There are cryptography applications that can serve as a remedy to one or more of the above. For example, Virtual Private Networks or the Tor anonymity network can be used to encrypt traffic from the user machine to a safer network while GPG, PGP, SMEmail [43] , or S/MIME can be used for end-to-end message encryption, and SMTP STARTTLS or SMTP over Transport Layer Security/Secure Sockets Layer can be used to encrypt communications for a single mail hop between the SMTP client and the SMTP server.
Additionally, many mail user agents do not protect logins and passwords, making them easy to intercept by an attacker. Encrypted authentication schemes such as SASL prevent this.
Finally, attached files share many of the same hazards as those found in peer-to-peer filesharing. Attached files may contain trojans or viruses
E-mail bombing
E-mail bombing is the intentional sending of large volumes of messages to a target address. The overloading of the target email address can render it unusable and can even cause the mail server to crash
E-mail spoofing
Main article: E-mail spoofing
E-mail spoofing occurs when the header information of an email is altered to make the message appear to come from a known or trusted source. It is often used as a ruse to collect personal information.
E-mail spoofing occurs when the header information of an email is altered to make the message appear to come from a known or trusted source. It is often used as a ruse to collect personal information.
Subscribe to:
Comments (Atom)