The US Government has been involved in e-mail in several different ways.
Starting in 1977, the US Postal Service (USPS) recognized that electronic mail and electronic transactions posed a significant threat to First Class mail volumes and revenue. Therefore, the USPS initiated an experimental e-mail service known as E-COM. Electronic messages were transmitted to a post office, printed out, and delivered as hard copy. To take advantage of the service, an individual had to transmit at least 200 messages. The delivery time of the messages was the same as First Class mail and cost 26 cents. Both the Postal Regulatory Commission and the Federal Communications Commission opposed E-COM. The FCC concluded that E-COM constituted common carriage under its jurisdiction and the USPS would have to file a tariff.[45] Three years after initiating the service, USPS canceled E-COM and attempted to sell it off.[46][47][48][49][50][51][52]
The early ARPANET dealt with multiple e-mail clients that had various, and at times incompatible, formats. For example, in the system Multics, the "@" sign meant "kill line" and anything after the "@" sign was ignored.[53] The Department of Defense DARPA desired to have uniformity and interoperability for e-mail and therefore funded efforts to drive towards unified interoperable standards. This led to David Crocker, John Vittal, Kenneth Pogran, and Austin Henderson publishing RFC 733, "Standard for the Format of ARPA Network Text Message" (November 21, 1977), which was apparently not effective. In 1979, a meeting was held at BBN to resolve incompatibility issues. Jon Postel recounted the meeting in RFC 808, "Summary of Computer Mail Services Meeting Held at BBN on 10 January 1979" (March 1, 1982), which includes an appendix listing the varying e-mail systems at the time. This, in turn, lead to the release of David Crocker's RFC 822, "Standard for the Format of ARPA Internet Text Messages" (August 13, 1982).[54]
The National Science Foundation took over operations of the ARPANET and Internet from the Department of Defense, and initiated NSFNet, a new backbone for the network. A part of the NSFNet AUP forbade commercial traffic.[55] In 1988, Vint Cerf arranged for an interconnection of MCI Mail with NSFNET on an experimental basis. The following year Compuserve e-mail interconnected with NSFNET. Within a few years the commercial traffic restriction was removed from NSFNETs AUP, and NSFNET was privatized.
In the late 1990s, the Federal Trade Commission grew concerned with fraud transpiring in e-mail, and initiated a series of procedures on spam, fraud, and phishing.[56] In 2004, FTC jurisdiction over spam was codified into law in the form of the CAN SPAM Act.[57] Several other US Federal Agencies have also exercised jurisdiction including the Department of Justice and the Secret Service.
Wednesday, March 3, 2010
Tracking of sent mail
The original SMTP mail service provides limited mechanisms for tracking a transmitted message, and none for verifying that it has been delivered or read. It requires that each mail server must either deliver it onward or return a failure notice (bounce message), but both software bugs and system failures can cause messages to be lost. To remedy this, the IETF introduced Delivery Status Notifications (delivery receipts) and Message Disposition Notifications (return receipts); however, these are not universally deployed in production.
There are a number of systems that allow the sender to see if messages have been opened
There are a number of systems that allow the sender to see if messages have been opened
Privacy concerns
Main article: e-mail privacy
E-mail privacy, without some security precautions, can be compromised because:
e-mail messages are generally not encrypted
e-mail messages have to go through intermediate computers before reaching their destination, meaning it is relatively easy for others to intercept and read messages
many Internet Service Providers (ISP) store copies of e-mail messages on their mail servers before they are delivered. The backups of these can remain for up to several months on their server, despite deletion from the mailbox.
the "Received:"-fields and other information in the e-mail can often identify the sender, preventing anonymous communication.
There are cryptography applications that can serve as a remedy to one or more of the above. For example, Virtual Private Networks or the Tor anonymity network can be used to encrypt traffic from the user machine to a safer network while GPG, PGP, SMEmail [43] , or S/MIME can be used for end-to-end message encryption, and SMTP STARTTLS or SMTP over Transport Layer Security/Secure Sockets Layer can be used to encrypt communications for a single mail hop between the SMTP client and the SMTP server.
Additionally, many mail user agents do not protect logins and passwords, making them easy to intercept by an attacker. Encrypted authentication schemes such as SASL prevent this.
Finally, attached files share many of the same hazards as those found in peer-to-peer filesharing. Attached files may contain trojans or viruses
E-mail privacy, without some security precautions, can be compromised because:
e-mail messages are generally not encrypted
e-mail messages have to go through intermediate computers before reaching their destination, meaning it is relatively easy for others to intercept and read messages
many Internet Service Providers (ISP) store copies of e-mail messages on their mail servers before they are delivered. The backups of these can remain for up to several months on their server, despite deletion from the mailbox.
the "Received:"-fields and other information in the e-mail can often identify the sender, preventing anonymous communication.
There are cryptography applications that can serve as a remedy to one or more of the above. For example, Virtual Private Networks or the Tor anonymity network can be used to encrypt traffic from the user machine to a safer network while GPG, PGP, SMEmail [43] , or S/MIME can be used for end-to-end message encryption, and SMTP STARTTLS or SMTP over Transport Layer Security/Secure Sockets Layer can be used to encrypt communications for a single mail hop between the SMTP client and the SMTP server.
Additionally, many mail user agents do not protect logins and passwords, making them easy to intercept by an attacker. Encrypted authentication schemes such as SASL prevent this.
Finally, attached files share many of the same hazards as those found in peer-to-peer filesharing. Attached files may contain trojans or viruses
E-mail bombing
E-mail bombing is the intentional sending of large volumes of messages to a target address. The overloading of the target email address can render it unusable and can even cause the mail server to crash
E-mail spoofing
Main article: E-mail spoofing
E-mail spoofing occurs when the header information of an email is altered to make the message appear to come from a known or trusted source. It is often used as a ruse to collect personal information.
E-mail spoofing occurs when the header information of an email is altered to make the message appear to come from a known or trusted source. It is often used as a ruse to collect personal information.
Monday, February 15, 2010
Spamming and computer viruses
The usefulness of e-mail is being threatened by four phenomena: e-mail bombardment, spamming, phishing, and e-mail worms.
Spamming is unsolicited commercial (or bulk) e-mail. Because of the very low cost of sending e-mail, spammers can send hundreds of millions of e-mail messages each day over an inexpensive Internet connection. Hundreds of active spammers sending this volume of mail results in information overload for many computer users who receive voluminous unsolicited e-mail each day.
E-mail worms use e-mail as a way of replicating themselves into vulnerable computers. Although the first e-mail worm affected UNIX computers, the problem is most common today on the more popular Microsoft Windows operating system.
The combination of spam and worm programs results in users receiving a constant drizzle of junk e-mail, which reduces the usefulness of e-mail as a practical tool.
A number of anti-spam techniques mitigate the impact of spam. In the United States, U.S. Congress has also passed a law, the Can Spam Act of 2003, attempting to regulate such e-mail. Australia also has very strict spam laws restricting the sending of spam from an Australian ISP,it its impact has been minimal since most spam comes from regimes that seem reluctant to regulate the sending of spam.
Problems
nformation overload
A December 2007 New York Times blog post described E-mail as "a $650 Billion Drag on the Economy", and the New York Times reported in April 2008 that "E-MAIL has become the bane of some people’s professional lives" due to information overload, yet "none of the current wave of high-profile Internet start-ups focused on e-mail really eliminates the problem of e-mail overload because none helps us prepare replies".
Technology investors reflect similar concerns.
Wednesday, February 10, 2010
Pros
The problem of logistics
Much of the business world relies upon communications between people who are not physically in the same building, area or even country; setting up and attending an in-person meeting, telephone call, or conference call can be inconvenient, time-consuming, and costly. E-mail provides a way to exchange information between two or more people with no set-up costs and that is generally far less expensive than physical meetings or phone calls.
The problem of synchronization
With real time communication by meetings or phone calls, participants have to work on the same schedule, and each participant must spend the same amount of time in the meeting or call. E-mail allows asynchrony: each participant may control their schedule independently.
In business
E-mail was widely accepted by the business community as the first broad electronic communication medium and was the first ‘e-revolution’ in business communication. E-mail is very simple to understand and like postal mail, e-mail solves two basic problems of communication: logistics and synchronization (see below).
LAN based email is also an emerging form of usage for business. It not only allows the business user to download mail when offline, it also provides the small business user to have multiple users e-mail ID's with just one e-mail connection
E-mail bankruptcy
Also known as "e-mail fatigue", e-mail bankruptcy is when a user ignores a large number of e-mail messages after falling behind in reading and answering them. The reason for falling behind is often due to information overload and a general sense there is so much information that it is not possible to read it all. As a solution, people occasionally send a boilerplate message explaining that the e-mail inbox is being cleared out. Stanford University law professor Lawrence Lessig is credited with coining this term, but he may only have popularized it.[
Monday, February 8, 2010
E-mail bankruptcy
Also known as "e-mail fatigue", e-mail bankruptcy is when a user ignores a large number of e-mail messages after falling behind in reading and answering them. The reason for falling behind is often due to information overload and a general sense there is so much information that it is not possible to read it all. As a solution, people occasionally send a boilerplate message explaining that the e-mail inbox is being cleared out. Stanford University law professor Lawrence Lessig is credited with coining this term, but he may only have popularized it.[34]
Flaming
Flaming occurs when a person sends a message with angry or antagonistic content. Flaming is assumed to be more common today because of the ease and impersonality of e-mail communications: confrontations in person or via telephone require direct interaction, where social norms encourage civility, whereas typing a message to another person is an indirect interaction, so civility may be forgotten.[citation needed] Flaming is generally looked down upon by Internet communities as it is considered rude and non-productive.
In society email
There are numerous ways in which people have changed the way they communicate in the last 50 years; e-mail is certainly one of them. Traditionally, social interaction in the local community was the basis for communication – face to face. Yet, today face-to-face meetings are no longer the primary way to communicate as one can use a landline telephone, mobile phones, fax services, or any number of the computer mediated communications such as e-mail.
Research has shown that people actively use e-mail to maintain core social networks, particularly when others live at a distance. However, contradictory to previous research, the results suggest that increases in Internet usage are associated with decreases in other modes of communication, with proficiency of Internet and e-mail use serving as a mediating factor in this relationship.[33] With the introduction of chat messengers and video conference, there are more ways to communicate.
URI scheme mailto:
he URI scheme, as registered with the IANA, defines the mailto: scheme for SMTP email addresses. Though its use is not strictly defined, URLs of this form are intended to be used to open the new message window of the user's mail client when the URL is activated, with the address as defined by the URL in the To: field. [3
Filename extensions
Upon reception of e-mail messages, e-mail client applications save message in operating system files in the filesystem. Some clients save individual messages as separate files, while others use various database formats, often proprietary, for collective storage. A historical standard of storage is the mbox format. The specific format used is often indicated by special filename extensions:
eml
Used by many e-mail clients including Microsoft Outlook Express, Windows Mail and Mozilla Thunderbird.[31] The files are plain text in MIME format, containing the e-mail header as well as the message contents and attachments in one or more of several formats.
emlx
Used by Apple Mail.
msg
Used by Microsoft Office Outlook.
mbx
Used by Opera Mail, KMail, and Apple Mail based on the mbox format.
Some applications (like Apple Mail) also encode attachments into messages for searching while also producing a physical copy of the files on a disk. Others separate attachments from messages by depositing them into designated folders on disk.
eml
Used by many e-mail clients including Microsoft Outlook Express, Windows Mail and Mozilla Thunderbird.[31] The files are plain text in MIME format, containing the e-mail header as well as the message contents and attachments in one or more of several formats.
emlx
Used by Apple Mail.
msg
Used by Microsoft Office Outlook.
mbx
Used by Opera Mail, KMail, and Apple Mail based on the mbox format.
Some applications (like Apple Mail) also encode attachments into messages for searching while also producing a physical copy of the files on a disk. Others separate attachments from messages by depositing them into designated folders on disk.
Servers and client applications
Messages are exchanged between hosts using the Simple Mail Transfer Protocol with software programs called mail transfer agents. Users can retrieve their messages from servers using standard protocols such as POP or IMAP, or, as is more likely in a large corporate environment, with a proprietary protocol specific to Lotus Notes or Microsoft Exchange Servers. Webmail interfaces allow users to access their mail with any standard web browser, from any computer, rather than relying on an e-mail client.
Mail can be stored on the client, on the server side, or in both places. Standard formats for mailboxes include Maildir and mbox. Several prominent e-mail clients use their own proprietary format and require conversion software to transfer e-mail between them.
Accepting a message obliges an MTA to deliver it, and when a message cannot be delivered, that MTA must send a bounce message back to the sender, indicating the problem.
Mail can be stored on the client, on the server side, or in both places. Standard formats for mailboxes include Maildir and mbox. Several prominent e-mail clients use their own proprietary format and require conversion software to transfer e-mail between them.
Accepting a message obliges an MTA to deliver it, and when a message cannot be delivered, that MTA must send a bounce message back to the sender, indicating the problem.
Wednesday, February 3, 2010
Message header
Message headerEach message has exactly one header, which is structured into fields. Each field has a name and a value. RFC 5322 specifies the precise syntax.
Informally, each line of text in the header that begins with a printable character begins a separate field. The field name starts in the first character of the line and ends before the separator character ":". The separator is then followed by the field value (the "body" of the field). The value is continued onto subsequent lines if those lines have a space or tab as their first character. Field names and values are restricted to 7-bit ASCII characters. Non-ASCII values may be represented using MIME encoded words
Informally, each line of text in the header that begins with a printable character begins a separate field. The field name starts in the first character of the line and ends before the separator character ":". The separator is then followed by the field value (the "body" of the field). The value is continued onto subsequent lines if those lines have a space or tab as their first character. Field names and values are restricted to 7-bit ASCII characters. Non-ASCII values may be represented using MIME encoded words
Email Message Format
The Internet e-mail message format is defined in RFC 5322 and a series of RFCs, RFC 2045 through RFC 2049, collectively called, Multipurpose Internet Mail Extensions, or MIME. Although as of July 13, 2005, RFC 2822 is technically a proposed IETF standard and the MIME RFCs are draft IETF standards,[23] these documents are the standards for the format of Internet e-mail. Prior to the introduction of RFC 2822 in 2001, the format described by RFC 822 was the standard for Internet e-mail for nearly 20 years; it is still the official IETF standard. The IETF reserved the numbers 5321 and 5322 for the updated versions of RFC 2821 (SMTP) and RFC 2822, as it previously did with RFC 821 and RFC 822, honoring the extreme importance of these two RFCs. RFC 822 was published in 1982 and based on the earlier RFC 733 (see[24]).
Internet e-mail messages consist of two major sections:
Header — Structured into fields such as summary, sender, receiver, and other information about the e-mail. Body — The message itself as unstructured text; sometimes containing a signature block at the end. This is exactly the same as the body of a regular letter. The header is separated from the body by a blank line.
Internet e-mail messages consist of two major sections:
Header — Structured into fields such as summary, sender, receiver, and other information about the e-mail. Body — The message itself as unstructured text; sometimes containing a signature block at the end. This is exactly the same as the body of a regular letter. The header is separated from the body by a blank line.
Subscribe to:
Comments (Atom)